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SUMMARY

A detailed description is given of a technique for converting a contour map into
an equispaced grid of points. A full description is given of program MAPGRID which

converts digitized contour data into such a grid of points.
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! INTRODUCT ION

.1 Objective

This Report describes a technique for converting a contour map into an equispaced
grid of points. The purpose of the grid representation is to enable the map data to be
handled more easily in a computer and, as such, it is to form the base on which all
operations on the map data are to be performed. It is assumed that the contours repre-
sent some physical quantity and thus that the variable represented by the contour height
is a single-valued function of the map co-ordinates. It is also assumed that the

variable is smooth and continuous,

The technique described here has applications in image processing where, for
instance, it may be necessary to compare (by ratioing) an image and a contour map. A
grid representation is also an essential prerequisite for degrading the spatial resolu-
tion of a contour map by convolution, thus enabling contour maps having different
resolutions to be compared at a common resolution. These and other applications of this

technique are to be described in a subsequent report.

Included in this Report are discussions of the problems associated with the digiti-
zation of a contour map and those of interpolation in general. The method used, the
interpolation algorithms and the reasons for their use are described in detail. Also
described are two operations which may be required to be performed on a grid; those of
expanding (or contracting) the number of data points in the grid, and the construction
of cross-sections. Listings of all programs, which are written in computer independent

ANSI FORTRAN V, are given.

1.2 Outline of main program

Program MAPGRID transforms digitized contour data into a rectangular grid of

points. The program takes two orthogonal sets of cuts across the contour map (see Fig 1);
the points of intersection between these grid lines define the points at which interpo-
lated data is required. For each grid line the points of intersection of the line with
contours are calculated and then interpolation is carried out along the grid line to
obtain values at the grid points lying on the line. Also produced are weighting values
reflecting the contidence in the interpolated values., This procedure results in two
grids of points bheing obtained corresponding to the two sets of cuts, together with two
grids containing the associated weighting values. These weighting values are used to

combine the grids to produce the final grid.

[t is necessary to take two sets of cuts since it may be that some contours run
parallel to one of the sets of cuts and thus would be ignored by that set unless they
fell exactly on grid lines., Contours missed by one set of cuts are therefore incor-
porated in the orthogonal set. In this way the orientation of the cuts with respect to
the contour map is not important, whifst it may be crucial i1f onlv one set of cuts were

to be taken,
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2 DIGITIZATION
2.1 Digitization of contours

In general, the investigator will not have the contour information already digi-
tized, but rather will only have a paper copy of the map, thus necessitating the digi-
tization of the contours. There are several reasons why the contours should be digitized

rather than digitizing along the grid lines that the computer program is going to use:

(1) It is very difficult to determine accurately the point of intersection of a

grid line with a contour if the two cross at a very oblique angle.

(ii) Digitization around a contour is often much easier if a manual digitizing
table is to be used, since the exact position of digitized points along a contour is not
important, whereas the exact point of intersection between a grid line and a contour is

much more important.

(iii) 1If in the future it is required to generate grids at other larger spacings,

then it is not necessary to redigitize the map.

(iv) It is easier to check for any errors in the digitized data if the digitiza-
tion is performed around contours, because the contours can easily be plotted and com-
pared with the original. With the alternative method a complex contour threading
operation would have to be performed before the contours could be plotted, which would

in itself give rise to some differences with the original contours.,

It is necessary for the investigator to decide the interval at which points on a
contour should be digitized. The evaluation of this interval involves an estimate being
made of the interval along a contour that can be represented by a straight line. This
interval is dependent upon the grid spacing and the curvature of the contour in question;
the smaller the grid spacing or the greater the curvature of the contour, the smaller
this interval must be in order to represent the contour to the required accuracy. More
precisely, if d 1is the digitization interval, r 1is the radius of curvature of the
contour (which generally is a function of position along the contour) and s 1is the
maximum permissible deviation of a straight line, joining two points on the contour,
from the contour, then d = /8rs , where d 1is such that the angle the contour turns
through is small, The author has found that for his work it is adequate that s be

half the grid spacing, but this may not be acceptable for all applications.

If the digitization interval is greater than d then the contour is under-
digitized, and if it is less it is over-digitized. The only consequence of the latter
is that the number of data points describing the contour is greater than necessary. The
contour fitting algorithm (described in section 3.3.3) is considerably better than
linear interpolation and is adonted to make a 'best' estimate, which is necessary with

under-digitized data.

The digitization of contours can take either of the following forms (amongst

others):

(i) Constant separation between data points.
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(ii) Variable density system with the interval depending upon the curvature of

the contour. This reduces the number of points required to describe a contour.

If it is decided to opt for a constant separation between data points then the map
will be correctly digitized if the evaluation of the digitization interval is based upon
the smallest radius of curvature of any part of any contour, The variable density
method requires a continual evaluation of the curvature of the contour and is best
suited to automated digitization, If the digitization is being performed manually using
this method then the investigator must make a subjective estimate of the required

digitization interval,

2.2 Grid spacing

The main information content of a contour map is contained in the relative posi-
tions of the different contours and the large scale features shown by them, rather than
in any small scale detail that may be shown by individual contours. Thus to retain the
main information content when transforming a contour map into a grid, the grid spacing
must be half the value of the minimum separation between any two contours or of large
scale loops of the same contour., Any detail on a scale smaller than this will not be
contained in the grid. More generally, the grid spacing should be at least half the size

of the smallest feature of interest.
2.3 Author's note

The above discussion is intended to illustrate some of the basic problems involved
in digitizing contours. It is not intended to be an exhaustive or highly rigorous

treatment of the subject,

3 INTERPOLATION TECHNIQUES

3.1 The problem of interpolation

It is often desired to estimate the value of a function, which is sampled at cer-
tain discrete points, at some intermediate points, This process is known as interpola-
tion. Although any set of data points can be interpolated by an infinite number of
different functions, one normally requires that interpolated values are reasonable. What
is believed to he reasonable depends upon the laws and processes underlying the data
values. It must be realised that unless a precise mathematical function expressing those
laws can be formulated, then no method of interpolation can accurately reproduce the
missing data points. In many instances it may be that whilst the nature of the processes
are understood they are not expressed in mathematical form, eg surface topography con-
sidered as an outcome of geological, climatic and cultural factors. In such instances it
is not possible to distinguish analytically and quantitatively between the desirability
of different algorithms, Instead, the choice has to rely on the judgement of the inves-
tigator himself, I¢ some rationalisation of a comparison between an achieved interpola-
tion value and a subjective impression of what the value would have been at that point.
In cases where the nature of the underlying processes and laws are not known the normal

criteria of smoothness and simplicity have to be adopted. These are conditions which are




iatuitivel: gesirable in the absence of detailed information as to the nature of the fit

required.

Interpolation functions can be of two types: local or global. A local function
uses only data points near to the point at which an interpolated value is required,
eg linear interpolation. A global function, however, utilizes all of the data points in
the data set, ¢g cubic spline interpolation, With this function distant data points make
a contribution to the interpolated value. Also, if the data set contains a large number
of points then this type of function generally involves a large amount of computation,
In cases where there is a mathematical function expressing the variable it may be that a
global function is the most appropriate, but, in instances where the only requirements
are for smoothness and simplicity, then a local function can be adopted. Indeed, the
adoption of such a requirement is desirable if there is no knowledge of the underlying
processes; the adoption of a global function, whereby distant data points can affect the
interpolated values, unnecessarily implies more correlation between data points than is
warranted. Obviously if it is known that there is no correlation between near and dis-

tant data points then a local function must be adopted.

The suitability of a particular function is also dependent upon the density of the
data points. For very closely spaced data the nature of the interpolation function is
largely unimportant and it may be that linear interpolation is entirely appropriate., 1In
gereral, the more widely spaced the data the fewer functions will prove acceptable., A
further (practical) consideration is the amount of computation involved with different
functions if large numbers of data points and interpolated values are required. Thus a
compromise may have to be made between the suitability of a particular algorithm and

maintaining the amount of computation at a manageable level.

In choosing an interpolation function it should be realised that in general no
method of interpolation is precisely accurate except at the points through which the
function has been fitted, If little is known about the exact properties of the variable
involved, then the assessment of the suitability of any interpolation function is largely
left to the investigator's intuition. Thus no general rule as to the applicability of a

particular function can be given, so each problem must be considered individually.

3.2 Interpolation requirements

There are two different interpolation procedures that have to be carried out:

(1) Interpolation along a contour,

(ii) Interpolation along a grid line using contour cut data.

As mentioned earlier, the choice of an interpolation function is dependent upon the
density of the data, For interpolation around a contour, linear interpolation will be
appropriate if the spacing between the data points is sufficiently small; however, if
this is not the case, a more appropriate function is required. This function should

possess the following properties:
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(i) Continuous.
(i1) Continuous first derivative,
(iii) Local.

(iv) Independent of the co-ordinate system,

The first two requirements are those normally adopted where no knowledge of the
underlying laws and processes is assumed and they are appropriate here, because contours
are expected to be smooth and continuous. Since it is to be taken there is no a priori
knowledge of the properties of the variable involved, it is required that the interpola-
tion algorithm be local rather than global, Ze dependent only upon the data points near
to the points at which interpolated values are required. This also means that the
interpolation function is going to be reasonably efficient for implementation on a com-
puter. The fourth requirement is introduced because, for contours, the co-ordinate
system (generally) does not have any significance for the variable involved, thus the
shape of an interpolated curve should be independent of the orientation of the axes of
the map co-ordinate system. The choice of a suitable function for contour data is
further complicated in that, in cartesian co-ordinates, infinite gradients (dy/dx = «)
can be encountered, and the function may have to be multi-valued under certain

circumstances.

When interpolating intermediate values along grid lines, infinite gradients and
multi-valuedness will not be encountered and there is no need for the function to be
independent of the orientation of the co-ordinate system because the choice of axis for
the contour 'height' is not arbitrary; no other choice of axis could reasonably be
adopted for physically realisable data. Thus for interpolation along a grid line a
function is required that is continuéus, with a continuous first derivative and is
local. In addition, the function must be constrained at turning points (Ze¢ maxima and

minima), so that interpolated values do not reach a neighbouring contour level.

With these considerations in mind, it was decided to adopt an average tangents

form of interpolation,

3.3 Average tangents interpolation

3.3.1 The basic algorithm

The method, which is applicable to any data set for which y 1is a single-valued
function of x , is illustrated in Fig 2. Ti is the connection vector between adjacent
data points and the tangent of the angle between the positive x axis and Ti is given
by:

tan(ei) =

where n 1is the number of data points in the data set.




An average is now taken of pairs of consecutive tangents as follows:

tan{(6. .,) + tan(9.)
i-1 i

Ai = 5 i =2, 3, teeoayn-—-1

For the first and last intervals:

A1 = tan(nl) An = Lan(wn_l) .

The average tangent Ai represents the mean gradient at the ith data point. Since
an interpolation function is required that is continuous with a continuous first deriva-
tive the function can be represented by a third order polynomial between points 1 and

1t 1 » t
- ( X.) b( = -) + ( x) d -
y alx + X X ci{x . +

The coefficients of the polynomial can be found by choosing the first derivative
of the polynomial at the points i and 1 + 1 as being the values of the average tan-

gent at these points, whence:

B 1703 Wl Ul 00 R €2 Wl 2(y141 = Yy)
3
(xi+1 xi)
- - 7 - - -
- O T T B S TS A S S &
(x - X )2
i+l i
c = A.
1
d = y R

With this method a different third order polynomial is fitted to each interval.

3.3.2 Constraining the interpolation function near turning points

The interpolation function for comtour cut data has to be modified so that inter-—
polated values remain within the interval defined by the two points between which the
function is valid, or, if this interval is zero, do not reach a particular value.

Fig 3asb (bold lines) illustrates cases where such modification is required. The x and

y values at the turning points (denoted by subscript t ) are obtained from the

equations:
2
0 = 3ax_ + 2bx_*+ ¢
t t
3 2
d = ax + bx_ +cx +d .
an yt t t t
1f both values of X, lie between X, and L) then the situation is as

illustrated in Fig 3a, and if only one value of X, satisfies this criterion then the

situation is as depicted in Fig 3b. The former case will be discussed first,
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1f both values of Y, lie between s and Viel the interpolation function is
not modified; otherwise the range is divided into three, defined by the points given
below, and new interpolation functions fitted.
x =X A = Ai y = yi
x = x, A =0 y = v L Yey < Vi
y o= ¥y toaly oy i yey >y
X = xtz A = 0 y = ytz if ytz > yi
YT Vi T 00 Ty 1 yep €y
X o= Xy AT ALY T Y
( & 1is a positive constant less than | such that y < Yiel for the precision with
which interpolated values are required. Generally o = 0.99 1is a suitable choice.)
If the new interpolation function does not remain between Y5 and Yie1 (as
illustrated in Fig 3a by the dashed line) then the interpolated y values near the
i i i ; i .+ . -y, . ~ . -Yy.
turning point that lie beyond either v; a(y1+1 yl) or y.. a(yl+1 yl) ,
whichever is appropriate, are set to that value, This situation will arise if
Yivl T Y5 .
Ai ; 31-;——-—:—;— , a condition that for most types of data should rarely occur. The
i+l i

procedure just described gives rise to discontinuities in the gradient, however in
practice since interpolated values are required at discrete points this somewhat

alleviates the problem.

If there is only one value of x, in the range X, to it may be required

X.

i+1
that interpolated values are not to exceed a particular value of y , say yo (Ze the
next contour level). If the interpolation function does not reach Y, then the func-

tion remains unchanged, otherwise two new functions are fitted using the following

points:
X = X A = Ai y = v;
X =X A= 0 yo o= oyt -y
T % M T M Y T Yy

1f the new function does not remain between Yi and v, ot x(y0 - vi) (as illus-

trated in Fig 3b by the dashed line), then interpolated values lving beyond
Y5 + m(yO - yi) are set to that value. It can be shown that for contour cut data,

where y. =y , the interpolation function must take the form shown in Fig 3b

1 i+l

{(7¢ remain above or below yi between xi and x ) since Ai and Ai’ have

i+l 1

opposite senses (if one is positive the other is negative; zero can be regarded as posi-

tive or negative depending upon what is necessary for Ai and A, to be of opposite
1

+1
sense).

—_———— ——— — ——— = — -
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3.3.3 The problem of the single~valuedness of the interpolation function

The average tangents algorithm is not independent of the orientation of the
co-ordinate system and in some cases the algorithm fails completely, . - when infinite

gradients are involved, when y 1is a multi-valued function of x . This problem can
however be overcome. Rather than considering y changing with respect to x ,

x and v are considered independently as changing with respect to the separation (s)

between adjacer* data points,

befine
2 2 } .
s; = éxi+1 - xi) + (yi+1 yi) ) i=1,2, vieveyn -1
X, - X, y. -y,
= i+l i = Ji#l i
mi(x) = s and mi(y) e .

The average tangents algorithm can now be applied to X and y separately as a
function of si with parameters mi being substituted for tan(ei) . Two equations

are thus obtained:

X = a 53 +b s +cs +d
X X X
and
3
y = as +bs +c¢cs+d
y
' 4
where s = Gx - >;)2 + (y - yi)z) .

Thus to derive the y value corresponding to a particular x value, the value of
s corresponding to the x value is found by solving the first equation (with the condi-
tion that 0 < s « s, ), and then substituting the value for s 1in the second equation

to obtain vy ,

With this procedure the algorithm never fails because 'infinite' gradients are
never encountered since s, > 0 (si = 0 corresponds to two adjacent data points being
coincident), The algorithm is independent of the orientation of the co-ordinate system
since x and y are treated in exactly the same manner as a function of the

co-ordinate free quantity s .

4 PROGRAM DESCRIPTION

Details of the main program such as dimensions of arrays, initialisation of para-
meters, and program units called are given in Appendix A. Detailed specifications of
all subroutines are given in Appendix B, and a complete program listing is given in
Appendix C., In the program listing the parameters initialised at the start of the main

program are those for the example discussed in this Report.




10

i It - = - —

i~
.

Program ;iiuns

Limits to the allowed values of interpolated map data have to be set. If no limits
are to be placed on interpolated values then the parameters setting the limits should be
set so that they are well away from any of the contour values and anticipated interpo-
lated values. The parameter FRACTN sets how closely interpolated values can approach the
next contour level at turning points. It is recommended that this be set at 0.99, as dis-

cussed in section 3,3.2, so that interpolated values just fall short of the next level.

Maps may be classified into two categories for the problem being considered here,
closed or open. A closed map is defined to be one where all contours start and finish
within the region being considered (as in Fig 1) and an open map is one where only some
contours start and finish within the region (as in the area enclosed by the dashed rec~
tangle in Fig 1). The operation of the program is slightly different for the two types
of map, this being related to combining the values obtained from the two sets of grid
lires and with the problem of interpolation outside a dataset. These are discussed in

more detail in sections 4,4 and 4.6 respectively. The two modes are selected as follows:

(1) Closed maps. IROUTE = I, ZE = value to which all points beyond the outer-

most contour are to be set.

(ii) Open maps. IROUTE *# |, ZE = value to which all points through which pass

x and y direction grid lines that do not intersect any contours.

4,2 Contour data formatting

The program requires that the contour data be in a specific form. Each contour
should have a header which should then be followed by the x and y co-ordinates of
each point, there being one point per line. The header contains three parameters: the
contour value, the number of points in the contour and the type of contour. The first

two parameters dare self-explanatory but the third requires further comment.

Contours can be of two types, either closed such as a circle or open such as a
line. It is necessary to know which of these types a contour is because of the problems
associated with interpolation in the end intervals of a dataset., The average tangents
algorithm (section 3.3.1) sets the average tangent at the end data points to be the
gradient between the two points forming the end interval, but for the case of a closed
contour a better estimate is possible because the data points beyond the end interval of
the dataset are known, Thus for closed contours (for which it is assumed that the first
and last points have the same co-ordinates) the first two points are also added to the
end of the dataset and then interpolation is only considered between the second and
second to last points on the contour. This procedure cannot of course be carried out
with open contours, yet it would be convenient if both types could be treated in the same
manner. Thus for open contours an extra data point is added at each end using linear
interpolation so that the average tangents at what are now the second and second to last
points remain the same., Therefore, after a contour has heen read in, it is reformatted

in one of the above ways by subroutine IDENT.




4.3 Program operation

The program starts by initialising all the constants and calculated the x and vy
values of the grid lines. The values of the points in the grid produced by taking cuts

in the y direction are then calculated.

Contours are read in and processed one at a time. The contour data is first
checked by subroutine CHECK to ensure that no two adjacent points have the same
co-ordinates, which would cause the contour interpolation algorithm to fail. The
contour data is then reformatted, as described above, by subroutine IDENT. Following
this, subroutine COORDS is called to calculate the points at which the y direction
grid lines intersect the contour; the algorithm described in section 3.3.3 is used here.
This procedure is repeated for each contour, after which subroutine HEIGHT is called to
sort the different contour values, together with the upper and lower limits to the map
data, into ascending order. Each of the y direction grid lines is now taken in turn.
Subroutine SELECT is called to obtain all the points of intersection of contours with a
chosen grid line and these points are then arranged into ascending order in the y
direction by subroutine ORDER. Subroutine CHECK2 is then called to ensure that no two
adjacent data points have the same y value, which would cause the subsequent inter-
polation algorithm to fail. Subroutine AVTAN calculates the values on the grid along
the grid line using the average tangents algorithm described in sections 3.3.1 and
3.3.2. The associated weighting factors for each of the grid points are obtained by a

call to subroutine WEIGHT.

The above procedure is repeated for the grid lines in the x direction, the only
differences being that subroutine HEIGHT is not called, and as each new line is gener-
ated it is combined with the first grid to produce the final grid. On completion of
this the final grid is then written to a file with the data being written from the top
of the grid downwards, Ze as a series of x direction grid lines in descending values

of y .

4.4  Producing the final grid

Associated with each interpolated value is a weighting factor. The weighting
factor reflects the fact that an interpolated value is most likely to be reliable where

the original data is most closely spaced. The weighting factor is given by:

where the point at which an interpolated value is required lies between X, and X0

If the point lies outside the range of the dataset then wx =0 .

Three methods of combining the two grids were investigated:

(Gx + G )
iy 6 = 2
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(GW +GW)
X X

(ii) 6, = R W+ wy > 0)
X y
(Gx +G)
(’f = ———Z_2 (Wx + Wy = 0)
(iii) cf = Gx (Wx > Wy)
Gy = Gy (Wx < Wy)
(G, + G.)
= X J =
G 5 CH wy)

where Gx and GV are the values at a particular grid location produced by taking cuts
parallel to the x and y axes respectively, wx and Wy are the corresponding
weighting factors, and Gf is the final value.

The desirability of each of these methods was judged on the difference between the
grid obtained from a series of contours of a two dimensional Gaussian and a grid derived
analytically. The contours were produced at intervals of 25 between 25 and 225 and both
grids were set to 0 beyond the outermost contour. Figs 4 and 5 show the two grids pro-
duced by the two sets of cuts and Figs 6, 7 and 8 show the differences between the pro-
gram grid and the analytic grid for the three methods; differences greater than |9|
are set to 9.

Fig 6 lends weight to the reasoning for the weighting factors used in methods 2 and
3, since the differences are a minimum 45° away from the X and Y axes, where the
spacing of the original data is the same for each set of grid lines. Fig 7 shows a con~
siderable improvement in the agreement but suggests that considerably greater weighting
should be given to the larger of the two weighting values. This is taken to the extreme
in the third method, producing a further improvement.

It is the third method, with some modification, that has been adopted to combine
the values produced by the two sets of grid lines. The weighting values are calculated

as before, except that if Ai = A =0 and z; =z, then W = -1, and if the grid

i+l i+l
line under consideration does not intersect any contour then W = -2 ., The method for
combining the values is dependent upon the type of map, and is as carried out according

to the following sets of rules:

Closed maps Open maps
G, + G ) G +G

¢, = —2——X W = W) ¢, = |2 ", =W)

f 2 X y f 2 X y
Gf = Gx (wX = =2)

N = = - N = = - = - 0
Cf Gy (Wy 2) Cf Gx (wx 1, wy 2 or U)
. _ G, = 6. (W ==, W ==2o0r 0)
cf = Gy (wx 0) f y y X
G = G (wy = 0) G, = Gx (wx > W)

. _ . G = G W >W)
Ge = G, W, > wy) £ y y
Gf = Gy (wy > w2)
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The extra conditions arise from the following considerations. 1In Fig 9a the grid
line yy intersects the contour with height 2 at points a through e . Interpolated
values along yy between b and d are given as 2 but, by inspection, the variable
should be less than 2 between b and ¢ and greater than 2 between ¢ and d . The
correct sense for the interpolated data is obtained by using interpolated data produced
by the orthogonal set of grid lines. If the weighting of a point is zero then it lies
outside the dataset defined by the intersection of the associated grid line with con~
tours, e for a closed map the point lies beyond the outermost contours. The value of
the final grid at that point should therefore have the value ZE which is to be assigned
to such regions, Applying the same procedure to open maps would produce undesirable
effects, for example all values within the shaded area of Fig 9b would be the same.

The final grid produced by combining those shown in Figs 4 and 5 with this method
is shown in Fig 10,

4.5 Alternative version

The interpolation algorithm described in this Report for carrying out interpolation
with contour data is adopted so as to give a 'best' estimate. However, if the contours
have been digitized such that linear interpolation is appropriate, an alternative version
of subroutine COORDS employing linear interpolation is available. This subroutine is
listed in Appendix D and can be simply substituted for that given in Appendix B, omitting
subroutines INTERP and CUBIC which are no longer required.

4.6 The problem of interpolation outside the contour set

In the case of closed maps, the user of the program is required to decide what
values should be assigned to grid points lying outside the outermost contour. Two poss=—
ible options are:

(1) Setting all values to the same value, say that of the base level or the

outermost contour,

(ii) Extrapolating smoothly to some defined level.

The first option is easy to implement and is available with this program, but the
second is much more difficult., It should be realised that one cannot reliably extrapolate
beyond the outermost contour unless the nature of the variable in the region is known. It
may be that the user knows that the variable tends to some base level and so wants to
extrapolate smoothly to this level for 'aesthetic' reasons. In this situation one very
satisfactory method is for the user to define a 'false' contour beyond the outermost con-
tour, where it is estimated that the variable reaches the base level, define a second
false contour (the shape of which is not important) outside the first and then run the
program with all values beyond the false contours being set to the base level, The
second false contour ensures that along a grid line the interpolation curve will have a
gradient of zero when it reaches the base level and that areas of constant value do not
occur in the region between the first false contour and the outermost contour of the ori-
ginal data, (This latter point is discussed in more detail in section 5.) The difficulty
of trying to extrapolate analytically is that the contours defined by the extrapolation
routines may be far from smooth, which is undesirable if the original map contours are

smooth.




=

If the first of the above options is applied to open maps, then the areas enclosed
by a corner of the map and the contour closest to that corner, will be areas of constant
height., Thus, if possible the user should enlarge the area over which contours are
digitized, such that the required area is contained within the final grid but does not

encompass any of the areas of constant height occurring at the corners.

4.7 Checking the program

Two programs are listed in Appendix E to enable a user to test program MAPGRID.
The program DRIVER! will produce the contour data that was used in running MAPGRID to
produce the grid shown in Fig 10, Program DRIVER2 will produce the same grid analytic-

ally, the difference between the two being that shown in Fig 8.

5 USING PROGRAM MAPGRID

For most contour maps that it is anticipated that a user will encounter the method
described in this paper will work well. There are, though, several situations where the
resultant grid is not particularly reliable, Here some examples of this will be

discussed together with some methods for overcoming the difficulties.

In Fig 8 the greatest difference between the interpolated and analytic grid is 5,
compared with a contour interval of 25, which generally would be considered to be good
agreement since no a priori knowledge of the variable is assumed, other than it be
smooth and continuous. However, it is worth examining a diagonal cross-section which
passes through the centre of the grid. The resultant curve (which is produced by pro-
gram SECTION described in section 6.2) is shown in Fig 11, where it can be seen that
there is a slight 'pecularity' in the curve near contour level 200. The cross-section
is at 45° to the two sets of grid lines and it is evident that if the cross-section had
been taken parallel to a set of grid lines the feature would not occur. The reason for
the occurrence of this feature can best be illustrated by reference to Fig 12, For grid
line aa the interpolated values in the range bb become increasingly unreliable as
bb , and hence d , increases. Interpolated values are most unreliable for the largest
values of d which satisfy the condition that d be less than T, =T, but interpo-
lated values in the interval bb are not incorporated in the grid if the weighting of
the points associated with the orthogonal set of grid lines is greater, The weighting
values associated with the final grid shown in Fig 10 can be seen in Fig 13. The
weighting values indicated by 1 lie near point X 1in Fig 12, By inspection it can be
seen that for certain values of r, and r X does not lie inside T, the
criterion for this being that rz/r] ¢ /2 . This is why no other feature similar to

that which occurs at contour level 200 exists on the cross-section, te¢

r

175 1.316 whereas ;ZQQ = 1,681
200 225

where the subscripts indicate the contour heights. Thus, when taking a series of cuts

across a map it is preferable to take these parallel to a set of grid lines.
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Another difficulty which may be encountered is best illustrated by reference to
Fig l4a. In this figure there are two sets of closed contours indicated by A and B ,
set A consists of three contours and set B of onlv one contour. By inspecticn it
can be seen that within the contour of set B the variable is greater than | and less
than the next contour level of 2, and outside sets A and B the variable is less
than | but greater than or equal to the base level of 0. It is not possible however to
make any reliable estimate as to the magnitude of the departure of the variable from | in
these cases. Fig l4b&c indicates the reliability of interpolated values obtained by
taking cuts across the map in the x and y directions., Fig l4d shows the values
obtained after the two grids have been combined, from which it can be seen that
reliable information as to the shape of the lowest contour is lost. The contour with
value 2 is correctly described and all interpolated values within it are considered

reliable.

The lcwest contour level and the sense, although not the magnitude, of the inter-
polated data can be correctly described using the following method. The contour map is
considered as consisting of two separate contour maps, these being the contour sets
A and B . Another contour with a value between O and | is drawn outside the two sets
as shown in Fig 15. [If program MAPGRID is now run (IROUTE set to I, ZE set to the base
level of 0), the resultant grid will be reliable for grid values greater than or equal to
1. It is suggested when drawing the false contours that the closer the chosen contour
level of the false contour is to the value of the outermost contour the closer the false
contour should be drawn to that contour. In drawing a false contour close to the outer-
most contour a user is most likely to estimate accurately the behaviour of the variable
beyond the outermost contour. This procedure of drawing false contours is recommended
even if the contour map shown in Fig l4a were to consist only of contour set A , since
from inspection of Fig 14d certain parts of the interval between contour levels | and 2

contain areas of constant height not implied by the data.

The above discussion is by no means exhaustive, but Is merely included to indicate
some problems which can be encountered and how it may be possible to overcome them.
Clearly the user should study any map before using the technique described in this
Report to ascertain whether it is desirable to introduce any false contours or to con-

sider the map in several parts.
6 ANCILLARY PROGRAMS

Two further programs have been written to carry out operations on the grid pro-
duced by program MAPGRID. One of the programs expands the number of data points in the

grid whilst the other enables a cross-section to be taken through it.

6.1 Program EXPAND

One of the requirements that the author has is to display the grid on a TV moni-
tor so as to visually inspect the data, The number of pixels required to fill the

screen has been 512 x 512, a number considerably greater than that needed in other

Nt
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computer processing ot the prid, This program has therefore been written to expand (or
contract) the number of dJdata points in cither or both the x and y directions., The
ditrerent expansion tactors for the two directions means that the aspect ratio (width/
hetlght) ot the grid can be altered so that the resulting image appears correctly pro-
portioned on a IV monitor (normal aspect ratio of 1,33),

Care has to be cexercised when interpolating data that has already been interpolated.
In general it is aceepted that in such instances it is best to use the same interpolation
alperithm as was used to produce the interpolated data. Thus in this program the average
tangents alporithm of section §,3,) was used, but it omits the 'logic' which prevents
Jdata at turning peints reaching the next contour level as information concerning the next
contour level is act contained in the grid,

The operation ot the program is straightforward, the user only having to specify
the expansion tactor required in each of the directions., The number of points down each
column of the prid is tirst adjusted to the required number and then the procedure is
repeated tor cach Line, each line being written to an output file as it iIs computed. A
descripticn and a listing ot the program is given in Appendix F.

6,0 Program SECTLON

A comman requirement is to look at a section across a grid. This program enables
ANy vreoss=section in anv direction to be taken. Again, for consistency, the average tan-
vents alporithm is used for interpolation,

The method adopted 1s as follows. The co-ordinates at which interpolated values
along the cut are required are calculated from the co-ordinates of the two ends of the
cut and the number ot points required in the cut, If the number requested is less than
two then 1t is assumed that points are required at the same interval as the grid spacing.
Values at the required points (* in Fig 16) are evaluated as follows. Four points (o)
are calculated with the average tangents algorithm using the four points linked by the
dashed line. These four points, linked by the dotted line, are then used to obtain a
value at the required point (*), This procedure is then repeated in the orthogonal direc-
ticn and a second estimate obtained, The final value is taken as the average of the two
estimates., In practice it is found that the difference between the two estimates is
insigniticant if the grid has bheen produced by program MAPGRID, With this method, inter-
polated values cannot be obtained in the end intervals, so values required in these
intervals are initially ignored and only those for which the above method is applicable
are derived. The values required in the end intervals are obtained from linear extrapola-
tion of the data previously derived.

A description and a listing of the program is given in Appendix G.

7 CONCLUSTONS

This Report has described a technique for converting digitized contour data into
an equispaced grid of points, and a computer program MAPGRID which performs this trans-
formation has been included. It should be realised that the computer programs described
in this Report are not designed either for maximum efficiency or minimum storage require-
ments, They are included so that the reader can use them to assess the technique and are
written for clarity so that they can easily be modified if required. Some applications

of this technique are to be described in a subsequent report,
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Appendix A
MAPGRID MAIN PROGRAM

The main program initialises constants, supervises the flow, controls all input

and output and combines the data from the two sets of cuts to produce the final grid.

wn 3
~—

Dimensions of arrays

maximum number of points in any contour

19

maximum number of points of intersection of a set of grid lines with the contours

maximum number of contour crossings of any grid line

number of grid lines parallel to the y axis (IDIM)

number of grid lines parallel to the x axis (JDIM)

the larger of IDIM and JDIM

number of contours +2

IDIM, .IDIM.

Constants to be initialised

IDIM

JDIM

IROLTE

ZE

W

XST

YST

HMIN

HMAX

FRACTN

maximum number of contour crossings of any grid line (= dimension of A, S and W)

maximum number of points of intersection of a set of grid lines with the con-

tours (= dimension of

X, Y and Z)

number of grid lines parallel to the y axis

number of grid lines parallel to the x axis

contro] parameter: =

| for closed mups, #1 for open maps

value to be assigned to points outside the contour map

grid spacing

x co-ordinate of the
y co-ordinate of the
minimum allowed value
maximum allowed value

normally set at 0.99,

origin of the grid
origin of the grid
of map data
of map data

see section 3.3,2
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A4 Program units

CHECK ensures that no two adjacent data points are coincident

IDENT reformats the contour data

COORDS  evaluates the co-ordinates at which y direction grid lines intersect a
contour

NFIX gives the integer value of a number, the value being rounded down to the lower
integer

INTERP  calculates the co-ordinates at which a line parallel to the y axis intersects
a contour between two points

CUBIC finds the roots of a third order polynomial in x in a specified range
HEIGHT sorts the contour values into ascending order

SELECT selects data points with a given x co-ordinate

CHECK2 ensures that no two data points on a grid line are coincident

ORDER sorts values in an array into ascending order

AVTAN calculates equispaced grid points along a grid line

AVTAN2 performs average tangents interpolation between two data points

WEIGHT generates weighting values associated with interpolated data points.

In addition the following standard FORTRAN functions are called:

FLOAT converts integer to floating point
IFIX integer value nearer to zero

ABS absolute value

ATAN arc tangent

cos cosine

A.5 Input/output

The contour data being used by the program is required to be read twice. It is
input to the program via FORTRAN channels 5 and 7. The output data is written to an
output file via FORTRAN channel 6.

nlt
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Appendix B

SUBROUTINE SPECIFICATIONS FOR PROGRAM MAPGRID

Summary -
Rl 104

Subroutine statement ~

lnput argument -

Input /output arguments -~

Subordinate subprograms -

Lxplanation -
to determine whether they

SUBROUT INE CHECK

This subroutine ensures that no two adjacent data points are

coincident
SUBROUTINE CHECK (F, G, IMAX, NMAX)
NMAX dimension for arrays F and G

F . .

G } x and y co-ordinates of the data points
IMAX number of data points

None

A check is carried out with each pair of adjacent data points

have the same co-ordinates. If they do one of the points is

removed and IMAX is decremented by 1.

Summary -

Subroutine statemert -

Input arguments -

Input/output arguments -~

Subordinate subprograms -

Explanation -

SUBROUTINE IDENT

This subroutine modifies the format of contour data so that

it is in a suitable form for subroutine COORDS
SUBROUTINE IDENT (F, G, IMAX, NMAX, ITYPE)

NMAX - dimension for arrays F and G

ITYPE - contour type: open contour = +1, closed contour = 0

F } x and y co-ordinates of data points defining the
G contour

IMAX number of data points defining the contour
None

See section 4.2.
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SUBROUTINE COORDS
Summary -~ This subroutine evaluates the co-ordinates at which y direc-
tion grid lines intersect a contour
Subroutine statement - SUBROUTINE COORDS (F, G, H, X, Y, Z, IMAX, KMAX, WF, K)
Input_arguments - F arrays containing the x and y co-ordinates of
G contour data points
H contour height

IMAX number of data points defining the contour
KMAX dimensions of arrays X, Y and Z

WF grid spacing

Output arguments - X arrays containing the x and y co-ordinates and the
Y height of intersection points between the grid lines
Z and the contour

Input/output arguments - K On input : number of intersection points found by pre-

vious calls to the subroutine since the

initialization of K 1in the main program

On output : number of intersection points found by pre-
vious and present calls to the subroutine

since the initialization of K 1in the main

program
Subordinate subprograms - Function NFIX
Subroutine INTERP
Explanation - Each pair of data points between 2 and IMAX-1 is taken in turn

and the y direction grid lines which intersect the contour between these two points are
derived. Subroutine INTERP is called to find the point of intersection of each of these
grid lines with the contour., For each point of intersection K 1s incremented by 1 and
the co-ordinates are entered into arrays X, Y and Z. It is possible that the contour is
changing direction between the two data points with the result that one or more grid
lines may cross the contour in two places (see Fig 17)., In this situation, subroutine
INTERP is called to determine whether the contour cuts the first grid line beyond the

point farthest from the point at which the contour changes direction (Pi- in Fig 17).

If it does not, the next pair of points (Pi and Pi*l) are considered. Iflit does, then
the co-ordinates of the intersection points are entered into arrays X, Y and Z and K 1is
suitably incremented., (If the contour just touches a grid line two points of intersec-
tion are still recorded although these points are coincident.) The next farther grid
line is now taken then the process repeated until a grid line is found that does not

cross the contour, when the next pair of points is then considered.

Only pairs of points between 2 and IMAX-] are considered because of the nature of

the interpolation algorithm used in subroutine INTERP,

A parameter EPS is defined in the subroutine, and is given as 0.,0! * WF in the pro-
gram listing. Thig parameter should be chosen so that it is smaller than the digitizing

step of the digitizer used to digitize the contour data,
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FUNCTION NFIX

Summary -~ This function gives the integer value of a number, the value

being rounded down to the lower integer

Function statement FUNCTION NFIX(FF)

Input argument - FF floating point number

Output function NFIX required integer value

Subordinate subprograms - FORTRAN function IFIX

Explanation - A call is made to a computer library function IFIX which gives
the integer value of a number, the value being the nearer integer to zero. If the

input value parameter has a value which is not an exact integer, the result of IFIX has
1 subtracted from it if the input parameter to IFIX is negative. The user is advised

that his compiler may have a library function equivalent to NFIX.

SUBROUTINE INTERP

Summary - This subroutine calculates the co~ordinates at which a line

X = XX intersects a contour between points (X2, Y2) and

(X3, Y3)
Subroutine statement - SUBROUTINE INTERP (X1, Y1, X2, Y2, X3, Y3, X4, Y4, XX, YY,
YYS, ITEST)
Input arguments - Xl
Y1
X2
Y2 x and y co-ordinates of the points used by the
X3 interpolation algorithm
Y3
X4
Y4
XX X value at which an interpolated y value is required
Output arguments - YY

YYsS } interpolated y values

ITEST number of interpolated y values

Subordinate subprograms - SUBROUTINE CUBIC

Explanation - The interpolated values of y are found using the average

tangents algorithm described in section 3.3.3. The equation

3
X = as +b s2 +¢cs +d
X x X X

is solved by a call to subroutine CUBIC.
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SUBROUTINE CUBIC

Summary - This subroutine finds the roots of a third order polynomial in
X 1in the range 0 < x < Xnax

Subroutine statement - SUBROUTINE CUBIC (A, B, C, D, X1, X2, X3, XMAX, ITEST)

Input arguments - A coefficient of the x3 term
B coefficient of the x2 term
C coefficient of the x term

D constant term

XMAX maximum value of x for which roots are required

Output arguments - Xl first root
X2 second root
X3 third root

ITEST number of roots

Subordinate subprograms - FORTRAN functions ABS

ATAN
cos
Explanation - This subroutine gives the real roots of the equation

f(x) = ax3 + bx2 +¢cx +d=0. A check is first carried out to determine whether the
contribution of the x3 term is significant; the criteria adopted being that

lOOaxmax > b . If this criterion is not satisfied, the equation is treated as a quadra-
tic. For this case a check is carried out to determine whether the contribution of the
x2 term is significant; the criterion adopted being that lOObxmax >¢ . If this
criterion is not satisfied, the polynomial is reduced to a linear equation. If

IOOaxmax > b but IOAaxzmax < ¢ the polynomial is again reduced to a linear equation.
The roots of the equation for these three cases are as follows:

(1) Cubic equation f(x) = ax3 + bx2 +cx+d = 0

3c - bz/a
9a

1f Q>+ R% >0, then

= 2/= -
xl 2vV-Q cos[3

If Q7 +R” »0

and

9bc/a - 27d - 2b3/a%
S4a -

)+

3a
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Having found the first root the other two can now be found.

' = x, +2 d' = x (x, + b}, ¢
1 a I\ a a
2
_el o ey g if - <
-5 (2> d if —2-<0
2 - 1] 1 A
- < Y - g if ~ S
5+ <,2) d if 5 >0
c' 2
X, is real only if (5—) -d'»0
d'
Xy = ;; .
(2) Quadratic equation f(x) = bx2 +cx+ d=0
c ch - 4bd
0 L 7b y

The roots are real only if cz - 4bd > 0 .

(3) Linear equation f(x) =¢x +d =20

Each of the roots is tested to determine whether it lies in the range
0 < x < Xoax * ITEST indicates the number of roots that satisfy this criteria. If

there is only one root it is returned by X! and if there are two they are returned by
Xl and X2 .
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SUBROUTINE HEIGHT
Summary - This subroutine sorts the contour values into ascending order.
The first and last values are contour levels within which
interpolated values are to be restricted.
Subroutine statement ~ SUBROUTINE HEIGHT (H, M, IH, HMIN, HMAX)
Input arguments - M number of contours used in program +2
HMIN minimum allowed value of map data
HMAX maximum allowed value of map data
Input/output arguments =- H On input : array containing all the height values of

all the contours used in the program

On ocutput : array containing the values of all the

different contour heights plus HMIN and HMAX

IH On input : number of contours used in the program

On output : number of different contour heights +2

Subordinate subprograms — None

Exglanation - HMIN and HMAX are entered into array H and then the values
of H are sorted into ascending order using a bubble sort (see explanation under SUB-
ROUTINE ORDER). A test is then carried out with each pair of values of H to see if
any are equal. If the two values are found to be equal, one of the values 1s removed

from the array and IH , denoting the values of interest in the array, is decremented

by 1.
SUBROUTINE SELECT
Summary -~ This subroutine seiects data points with a given x
co-ordinate
Subroutine statement ~ SUBROUTINE SELECT (X, Y, Z, KMAX, U, V, W, MAX, J,k WW)
Input arguments - X

arrays containing the x, y and z co-ordinates of the
intersection points between grid lines and contours
number of points of intersection

value of x for which data points are required
dimensions for arrays V and U

grid spacing

Jutput arguments - array containing y values with the x value U

array containing 2z values with the x wvalue U

o X o< gSC§N~<

number of data points with x value U

Subordinate subprograms - None

Explanation ~ Each point of intersection is tested to determine whether the
x value is equal to U . If it is, J 1is incremented by | and the corresponding vy

and 2z values are entered into arrays V and W respectively,
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SUBROUTINE ORDER

Summary - This subroutine orders values in an array into ascending order
Subroutine statement - SUBROUTINE ORDER (V, W, LMAX)
Input argument - ILMAX number of values to be sorted
Input/output arguments = V array of values to be sorted
W array of values associated with W

Subordinate subprograms ~ None

Explanation - The method used is the bubble sort. This involves taking each
pair of values of V in turn and checking to determine whether or not they are in the
correct order. If they are not they are interchanged (together with the associated
values of W ) and a counter J 1is incremented. If J 1is non-zero (indicating that at
least one pair of values has been interchanged) the process is repeated. When J is

zero all the values are in the correct order.

SUBROUTINE CHECK2

Summary -~ This subroutine ensures that in the situation where a grid line
just touches a contour, the two data points representing the
points of intersection of the grid line with the contour are

not coincident.

Subroutine statement - SUBROUTINE CHECK2 (Y, LMAX, WW)

Input arguments - LMAX number of data points

WW grid spacing

Input/output arguments = Y array containing y values of data points

Subordina.e subprograms - FORTRAN function ABS

Explanation - If a grid line just touches a contour subroutine COORDS outputs
two points with the same co-ordinates, rather than one point, which will cause subsequent
interpolation algorithms to fail unless correctel., This subroutine checks each adjacent

pair of points to determine whether they have the same y values. If they do the y

. _ .
values of these points, yi_1 and yi , are then replaced by yi_1 El and yl E2
where
El = Iyi_] - yi_ZI/S unless El > E or Yioo does not exist, when El = E
= - y. . i = E
E2 lyi+1 yl|/5 unless E2 > E or Yis does not exist, when E2
and E = 0.0} x WW .,
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SUBROUTINE AVTAN

Summary - This subroutine calculates equispaced data points along a grid
line
Subroutine statement - SUBROUTINE AVTAN (A, Y, Z, N, YY, 2Z, JDIM, H, IH, FRACTN,

IROUTE, ZE)

Input arguments -Y array containing y values of data points
2 array containing =z values of data points
N number of data points
vy { array containing y values at which interpolated
values of 2z are required
JDIM number of interpolated values required
R
IH % used in SUBROUTINE AVTAN2 (see subroutine AVTAN2)
FRACTN

IROUTE routing parameter (see explanation)

ZE value of 2z for points outside the contour map
Output argument - 2Z array containing interpolated values corresponding
to YY
- A array containing the average tangent at each of the

data points

Subordinate subprograms - SUBROUTINE AVTAN2

Explanation - The average tangents at each of the data points (yi, zi) are
first calculated. For each value of y at which interpolated values of 2z are

required (yy) the data points are found which satisfy the criterion y; <y < Vi

A call is then made to subroutine AVTAN2 to obtain the interpolated value of 2z at yy .
If the value of yy lies outside the range of the data points then one of two alterna-

tives is taken depending upon the value of the routing parameter IROUTE.

IROUTE ¥ 1 The interpolated value is set to the value of 2z corresponding to

the y value closest to vyy .
IROUTE = 1 The interpolated value is set to 2ZE , a value specified by the user
in the main program.

It should be noted that in arrays YY and Y the values must be arranged in
ascending order and no two values of Y must be the same. The latter condition is

ensured by a call to subroutine CHECK2 prior to the call to this subroutine.
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SUBROUTINE AVTANZ2

Summary - This subroutine performs average tangents interpolation
sutmar y

between two data points

Subroutine statement - SUBROUTINE AVTAN2 (YY), Y2, Z1, Z2, Al, A2, YY, Z2Z, H, IH,
FRACTN)

Input_arguments - ;: % y and 2z values and average tangent at the first
Al data point
Y2
22 y and 2z values and average tangent at the second
A2 data point

v

H {
TH

FRACTN

Output argument - 22

Subordinate subprograms - None

y value at which an interpolated z value is
required

array containing the values of all the different
contour heights plus minimum and maximum allowed
values of map data

number of values in H

set in main program, normally to 0.99

interpolated z value

Explanation - The interpolated value of 2z 1is found using the average

tangents algorithm described in section 3.3.1.

section 3.3.2) so that at turning points the interpolated value is not allowed to

reach the next contour level and in other circumstances is constrained to remain

between Z] and 22 .

The algorithm has been modified (see

29
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SUBROUT INE WEIGHT

Supmary - This subroutine generates weighting values associated with the

interpolated data points along a grid line

Subroutine statement - SUBROUTINE WEIGHT (Y, YY, W, N, JDIM, Z, A)

Input arguments -Y array containing y values of data points
YY array containing y values of interpolated data points
N number of data points

JDIM number of interpolated data points

Z array containing 2z values of data points
A array containing the average tangents at each of the
data points

OQutput argument -W array containing weighting values

Subordinate subprograms - None

Explanation - for each interpolated point (yy) data points are found which
satisfy the criterion v <YY€ Yy o The weighting value associated with yy is
given by:
W = l_
Yis1 T Yi

If = W =
Y yy ¥, Y,

If A, A. =0 and 2., = Z. W = -l
i 1+l 1 i+l

If yy lies outside the range of y w = 0 .

It should be noted that the weighting value is not important when Yy =Yy; OT Y. 4 -
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Appendix C
LISTING OF PROGRAM MAPGRID

essss PROGRAM MAPGRID #»asx PAGE BBA1

s»sse PROGRAM HRPGRID soern

"t‘."ﬁ“““““‘.‘..'..““.'.‘t.ﬂ‘i."...“.““‘..“‘...“...“‘.....

THIS PROGRAM CONVERTS CONVERTS A CONTOUR MAP INTO R UNIFORMLY SPACED GRID
OF POINTS

CONTOUR FITTING ALGORITHM! AVERAGE TANGENTS

“t.t“..""‘."t.“‘..‘.‘..“““.‘U‘."t‘..‘.‘.".““.‘...'.'...“‘..‘

DIMENSION F(58),C(58).XC(1REA), Y(1880),2¢(188@)>,AC(38),8(38)
DIMENSION UCS9),V(59),T(59),UT(59), W38, H(3R)
DIMENSION AACSY.59), WA(SI,59)

INITIALIZATION OF PARAMETERS

MAX=3D8

KMAX=18008

I1DIN=59

JDIM=59

IROUTE=1

ZE=B. 8

Wy=1.0

XST=-29.8
¥YST=-29.8

HMIN=8 .8
HMAX=2%58 .8
FRACTHN=8.99

DO 10 1=1,IDINM
UCT)I=FLOAT(I-1)sUV
DO 20 J=1,4DIN
VCJIeFLOAT(J=1)Ul

GENERATE GRID IN F DIRECTION

H=8

KREC=8

LELESY

READ (5,St,.END=23B) H(M), INAX, ITYPE

D0 228 I=i, INRX

READ (5,52) F(I1).,G(I)

FCID=FCI)-XST

GCI)=GCI)-YST

NNAX=INAX

CALL CHECK (F,G, INAXK,NMAX)

HMAX=IMAX+2

CALL IDENT &F,G, IMAX, NMAX, ITYPE)

CALL COORDS (F.,G.H(M),X,Y,2, INAXK, KHAK, W, KREC)
Go T0 218

LEL RS

CALL HEIGHT C(H, M, IH, HNIN, HNAX)

00 24@ I=1,1IDIN

CALL SELECT (X,Y,2.KREC,UCI),8,W.NAX,LHAX, HU)
IF (LMAX LT.1) GO TO 260

CALL ORDER (8,W,LMAK)

CALL CHECK2 (8,LMAX,WW¥)

CALL AVTAN CA,S,¥,LNAX,V, T,JDIN H,IH,FRACTN, IROUTE, 2E)
CALL WEIGHT (S,V,WT,LMAX,JDIN.W.A)

Go TOo 238
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318

338

368
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DO 278 Je=1,JDIN
T(J)=-2.8
T¢JI)=2E

00 248 J=1,J01N
ARCT, J)=TC(J)
UACT, J)H=¥TC(Y)

CENERQTE GRID I[N G OIRECTION

KREC=8

READ (7,51,END=330) HH, INAX, ITYPE

00 328 Isi.IMAX

REARD (7,32) F(1).G(1)

FCIdaF(I)-NST

CCII=G(ID)-Y8T

NNAX=INAX

CALL CHECK C(F.,G., INAX, MNARX)

NHAX=INAX+2

CALL IDENT (G.F. IMAX, MNARK., ITYPE)

CALL COORDS (G.F,HM,X.,Y,2,INAX,KNAX . WW,KREC)
GO T0 318

MRITE (6.33) 10IK,JODIN

DO 348 J=1,JDIN

CALL SELECT (X, Y,2,KREC,V(J).S, W, MAK,LNAX. . WU)
IF CLHAX . LT.1) GO TO 368

CALL ORDER (8.8.,LMRX)

CALL CHECKZ2 (8,LMAX.W¥)

CALL AVTAN C(A.8,¥,LNAX.U, T, IDIN . H,IH ,FRACTN,IROUTE, 2E)
CALL WEIGHT (8, U.¥T.LNAX,IDIN.¥.A)

Co TO 358

00 378 I=1,I101IN

UT(I)=-2.8

TCI)=2E

DO 348 I=1.,1IDIN

IF C(WACL.J).EQ. UTCID) AACTI.JII=CRACT,.J)+TCI))/2.8
IF CUACT,LJ) . EQ.MTCTID) GO YO 348

IF CIRQUTE .NE.1) GO TO 343

IF (WR<I,J).EQ.-2.8) GO TO 348

IF CHTCI) . EQ.-2.0) ARCIJ)I=TC(I)

IF (UTC1).EQ.~2.8) GO TO 348

IF (WACTI.J) .EQ.B.8) GO TO 348

IF CUTCI). EQ.B.B) AACT, YD=TC(I)

IF CUTC1). EQ.2.08) GO TO 348

IF CUTCID) . GT . WACT,J)) RACT,JDI=TCI)

GO TO0 3«40

IF (WACI,J).EQ.-1 B.AND UTC(I).LE. B.8B) GO TO 340
IF CNTCID . EQ. -1 . B.AND . WACI,J) LE. 2.8) GO TO 346
IF CUTCI) . GT.WACTI,d)) ARCT,J)I=T(I)

GO TO 348

RAC T, $ImTCT)

CONTINUE

OUTPUT FINAL GRID

DO 480 J=1,JDIN
WRITE (6.54) (ARCI,.JDINeL-J),I=1,IDIM)

INPUT/0UTPUT FORMATS

FORMAT (F6.1,15.12)

ot
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33
34

18

28

1@
28

38

48

sssse PROCRAN NAPGRID sssss PAGE B8B83

FORMAT (2F8 .3)
FORMAT (13.1X.13)
FORNAT (12F6.1)

STOP
END
SUBROUTINE CHECK (F,G.,INRN,NNAX)

THIS SUBROUTINE ENSURES THAT NO TWO ADJACENT DATA POINTS ARE COINCIDENT

DIMENSION FCNNAX),GCHNAX)
Ist

In]+l

IF C1.CT . INAX) RETURN

IF (FCI) . NE.FCI-1)>) GO TO 18
IF (GCI) NE.GCI~1)) GO TO 1@
DO 28 J=1, IHAX

FCd-1)aFCd)

G(J-1)=GY)

IHAX=INAX-1

T=I-1

GO T0 18

END

SUBROUTINE IDENT (F, G, IMAX.NMAX,ITYPE)

THIS SUBROUTINE MODIFIES THE INPUT DATA FOR SUBROUTINE COORDS DEPENDING
UPON THE CONTOUR IDENTIFICATION GIVEN BY ITYPE

ITYPE=+1 OPEN CONTOUR

ITYPE= B CLOSED CONTOUR

ITYPE=-1 UNDEFINED

DIMENSION FC(NMAX), GCNMAX)

IF CITYPE) 18.28.38

RETURN

FCIRAR+1OI=F(2)

G(IMAX+1)I=G(2)

FCINAK+2)=F(3)

GCINAX+2)=G(3)

INAXs INAX+2

RETURN

FCIRAX+1)=2 BeF(IMAXI-F(IMAX-1)
CCIMAX+L)I=2 BsCC INRK)I-GCINAX-1)
INAX=INAX+2

DO 4B 1=2, INARX
FCINAR+42-T)=FC(INRK+L-1)
GCIMRR+2-1)aGC(INAK+L~1)

F(1)=2 BeFC(2O-F(D)

GC1)I)=2 @eG(2)-GC(3)

RETURN

END

SUBROUTINE COORDS (F.G,H,X,Y.,2, INAKX. KNAX, ¥F.K)

THIS SUBROUTINE EVALUATES THE CO-ORDINATES AT WHICH THE GRID LINES
INTERSECT A CONTOQUR. AVERAGE TANGENTS INTERPOLATION IS ENPLOYED.

DINENSION FCINAK), GCIMAX), XCKHAX), YCKNAX ), 2CKNAX)
EPS=ABS(B. B1+UF)

I=3

IF1=NFIRCFC(I-1)/WF)

IF CABSC(FLOATCIF1)MWF-FCI-1)).GT . EPS) GO TO §




Appendix C

PAGE 8884

sesss PROGRAN MAPGRID seess

K=K+i
XK(K)=F(]I)
YC(K)=GCI)
2¢K)=H
S I=l-1
88 I=Jef
IF (I .GT INAX-1) RETURN
IF1=sNFIX(FCI-1)/UF)
IF2eNFIXC(FC(1)/4F)
FFe(FC(I+1)=-FCI)IO(F(I-§)~FC(I-2))
IF (FF.LT.8.8) GO Y0 58
NF=]1F2-IF1
IF (NF) 48.,350.60
68 DO 28 Ne=i,NF
(4] €3
R(K)oFLOATCIFL1)oUF+FLOAT(N e yF
IF (ABS(X(K)-F(I)>).GT EPS) GO TO 1@
Y(K)sG(I)
Go 10 28
10 CALL INTERPC(FC(I-2),CGC(1-2),F(I-1),GCI~1),FCID),GCTI),FC(I+})
20 2¢(K)=H
GO0 TO 68
48 NFe-NF
IF (ABSC(FLOATCIF2)OUF-F(I)D) LY EPS) NF=NF+1
00 38 M=1,NF
UXnFLOATCIF1)OUF-FLOATIN-1)euWF
IF CaBS/ ¥X-F(I-1).LYT EPS) GO TO 38
KeKet
KK I)uXX
IF (ABS(X(K)-FC(I)>.GT EPS)Y GO 10 7@
Y(K)=eGCI)
2¢(K)=H
GO TO 38
78 CALL INTERP(F{I-2).GCI-2).FCI-1),G(I-1).FC1)> GCI),F(l+1)
$.GCI¢1), XK, YC(K), YYS,ITEST)
2(K )= H
38 CONTIMNUE
GO T0 98
SB XXsFLOATCIF1)eWF
IF (ABS(X¥X-F(1)).GT.EPS) GO TO 35
KsKel
KCKI=F(1l)
Y(KX)=G(])
2(K)=H
8S IF (FF .GE 8.8) GO T0 o8
Ne@
ISIGN=t
IF CCFCI+1)+F(I=-2))-CFC(IYX+F(1-1))) 10AB.88.,98
98 ISIGNs-}
Na)
IF (1F2.GT.1F1) 1Fi=s]IF2
GO TO0 118
108 IF (IF2.LT.IF1) 1IFi=1F2
118 NsN+1+ISIGN
KXsFLOATCIFI+N)OUF
CALL INTERPC(F(I-2>,GC(I-2),FC(I-1),GCI-1),FC1),GCL),FCI+1)
®,GC1+1), XX, ¥YYL,YY2,ITEST)
IF CITEST EQ@.B) GO TO 88
K=K+
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XC(KI=XX

Y(K)mYY]

2(K)=H

IF C(ITEST EQ. 1) GO TO 118
K=K+l

XCK I=mXX

Y(K)I=YY2

2(K)=l

G0 70 118

END

FUNCTION NFIXC(FF)

THIS FUNCTION GIVES THE INTEGER VALUE OF A NUMBER, THE VALUE BEING
ROUNDED DOWN TO THE LOWER INTEGER.

NFIX=IFIXCFF)

IF (FLOAT(NFIX) EQ FF) RETURN

IF (FF.LT.8.8) NFIX=NFIX-1

RETURN

END

SUBROUTINE INTERP (K1.Y1,X2.Y2,X3,Y3,.X4,Y4,XX,YY.YYS, ITEST)

TH1S SUBROUTINE CALCULATES THE CO-ORDINATES AT WHICH A LINE X=XX
INTERSECTS A CONTOUR BETWEEN POINTS (X2.Y2) AND (X3.Y3)

Dis((X2-X1)882+(Y¥2-Y1)e82)eeld §
D2oC(XI-R2)9824(¥3-Y2)s02)esl §
D3s((X4-X3)9e2+(Y4-Y3)ee2)oel 3
AXI=((X2-XK1)/D1+(XI~-X2)/02)/2 .8
AX2=C(XI-XK2)/702+(X4-X3)/DT)/2.8
AY1I=((Y2-Y1)/D1+(Y3-Y2)/02)/2 &
AY2u((Y¥3-Y2)/D2+(Y4-Y3)/D3)/2.8
DX=X3-X2

PY=Y3-Y2

AX=C(AX1¢D2+AX2eD2-2 . B»DX)/D2%e]

BX=(3 BeDX-AX2«D2-2 HosAX1¢D2)/D2¢s2

CXwAX1

AYs(AY1eD2+AY2¢D2-2 BsDY)/D29s3

BY=(3 BeDY-AY2¢02-2 B*AY1¢D2)/D20e2

CY=AY1

DXuX2-XX

CALL CUBIC (AX,BX,CX.DX,DS1.082,D083.D2,ITEST)
IF (ITEST EQ.8) RETURN
YY=AYeDS1es3+BYODS1e02+4CYSDS1+Y2

IF CITEST EQ.31)> RETURN
YYS®AYSDS2003+BYSNE20024CYsDS2+Y2

I1TEST=2

RETURN

ENXD

SUBROUTINE CUBIC (AR,B.C.,D.,X1,X2,X3.XMaX, ITEST)

THIS SUBROUTIMNE FINDS THE ROOTS OF A THIRD ORDER POLYNOMIAL 1IN THE
RANGE B.B LT X LT XMAX

I1F CABS(AsXMAXe 180 8) LY ABS(B)) GO TO 38
IF CABS(AeXMNAXs+2«18880 8) LT ABSCC)Y) GO TO 3@

SOLVE THIRD ORDER POLYNOMIAL

Qa(3 B+C-(B0e2)/£)/(9 BeR)
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R=(9 B+BeC/A-27 B*D~-2 .B»Bes3/A»+2)/(54 BeAQ)
IF Cde»3+Ree2 (T . 8.8) GO TQ S
S=R+(@se3+Res2)s28 . 5§

SIGN=1 .8

IF (S.LT.8.8) SIGN=-1.8
S=SICN#(ABS(S))ex(1 .8/3.8)
TaR-(Q@ss3+Res2)es2@. 95

SICN=1.8

IF CT.LT.8.8) SIGN=-1.8
T=SIGCHNe(ABSC(T))ee(1 . B/3 .8
XK1=S+T-B/(3 .@sR)

GO T0 18
DUN=ATANC((ABS(-0»23/Ree2-1 B))+sB.5)
IF (R.LT.8.8) DUN=3.141592634-DUN
¥1e2 @e(-R)sel JS+COSCDUM/3 . B)-B/(3 BeA)
I1TEST=1

BB=X1+B/R

CC=X1eC(Xi+B/A)+C/A

TEST=a(BB/2 B)»+2-CC

IfF (TEST.LT.@.8> GO TO 25

IF (-8B/2.8.L7.8.8> GO 10 15
X3=-BP/2 B+TEST+»8.S

GO T0 20

X3=-8B/2 B-TESTe»R 3

X2=CC/ X3

ITEST=3

GO TO 43

SOLVE SECOND ORDER POLYNOMIAL

IF (ABS(BeXNMAXe 168 &) . LT ABSCC)) GO TO 48
TESTsC#e2-4 ReBeD

IfF (TEST .CE 8.8) GO TO 3%

ITEST=8

RETURN

X1a(-C-TESTesl J)/C(2 08eB)

X2a(-C+TESTesl 5)/(2.008)

ITEST=2

GO TO 43

SOLYE FIRST ORDER POLYNOMIAL

X1e-D/C
ITEST =]

WHICH ROOTS LIE IN THE RANGE B .B.LT . X.LT XMAX

IF (X1 G7.8 @ AWND X1 LT XWAXK) GO TU 65
ITEST=ITEST-1

IF CITEST-1) 3B.35.68

RETURN

XisX2

GO 7O 45

XK1sX2

X2sX3

GO TO «S

1F CITEST . EQR.1) RETURN

IF (X2 CT. 8.8 AND X2 LT XMAX)> GO TO 75
ITEST=ITEST-1

IF (ITEST EQ.1) RETURN

ol
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X2=X3
GO T0 78

7?5 IF CITEST.EQ.2) RETURN
IF (X3 GT.8.0.AND. X3 . LT .XMAX) RETURN
ITEST=]1TEST-1
RETURN
END
SUBROUTINE HEIGHT CH, N, IH,HNIN, HNAX)

TH18 SUBROUTINE SORTS THE CONTOUR VALUES INTO ASCENDING ORDER. THE FIRST
AND LAST VALUES ARE CONTOUR LEVELS WITHIN WHICH INTERPOLATED VALUES ARE
70 BE RESTRICTED

OO0

DIMENSION H(M)
HCA-1)sHNIN
HCAD)uHNAN
LMAR=N-1
20 J=8
00 18 I=1,LMAX
IF CHCI«1).GE.HC1)) GO TO 18
JuJ+y
DUM=H(I+1)
HCI+1)aHCD)
HCI )=DUM
18 CONTINUE
IF (J .NE.8) GO TO 28
1=0
48 I=l+}
33 If C(I.GT.LMAX) GO TO 38
IF (HCI+1) NE . HCI)) GO TO 4@
DO 38 J=I,LNAX
S8 HCGJ)ImHCJI+1)
LHAX=LNAX~1
GO Y0 38
38 IH=LHAX+1
RETURN
END
SUBROUTINE SELECT (X.Y,2.KNAX.U,V.,¥.NAX,J,HW¥)

THI8 SUBROUTINE SELECTS DATAPOINTS WITH A GIVEN X CO-~ORDINATE

OO0

DINENSION XCKMAX ), YCKMAX), ZCKMAX), VOMAX) ., W(NAX)
I1=8
J=8
EPS=ABS(B. 1ey¥)
18 I=l+g
IF (I GT KNAX)> GO TO 28
IF C(ABS(XCI)-U).GT .EPS) GO TO 1@
Jed el
V(JIsyY(l)
W(J)I=2(1)
GO 70 18
28 RETURN
END
SUBROUTINE ORDER (V,W,LNAX)

THIS SUBROUTINE ORDERS THE VALUES OF V INTO ASCENDING ORDER

[z N aNe]

DIMENSION VCLNAX), WCLRAX)
1F CLMAX EQ.1) RETURN




OO0 0

OO

28

18

18

Appendix C

PRGE B8as
sseses PROGRAM NAPGRID sees»

LLHAK=LNAKX~1

J=8

00 18 I=1,LLHAX

IF (V(I+1).GE.V(I)) GO TO 18
J=d ol

DUN=V(]+1)

V(I+1)a¥(])

V(I DI=DUN

DUNSEC(1I+1)

V(Iel)ml(])

VCI)=DUN

CONTINUE

IF (J.NE.B) GO YO 28

RETURN

END

SUBROUTIME CHECKZ2 C(Y.LNAK, W)

THIS SUBROUTINE ENSURES THAT IN THE SITUATION WHERE A GRID LINE JUST
TOUCHES A COMTOUR THE TWO DATA POINTS REPRESENTING THE POINTS OF
INTERSECTIOM OF THE CRID LINE VWITH THE COMNYOUR ARE NOT COINCIDENT

DIMENSION Y(LNAX)

IF (LRAX.LT.2) RETURN

EPS=8.H1s0¥

1=y

Insledg

IF (1.GT.LNAX) RETURN

IF (Y(1)>.NE.¥(I-1)>) GO TO 18

IF (1.GT7.2) YLeY(1-2)

IF C1.LT.LWAN) YHeY(I+1)

1IF (1.€0@.2) YL=Y(l-1)-3 @e¢EPS

IF (1 .EQ.LNAX) YHeY(I)+3 BeEPS
88=ABS(YL-Y(1~-1))/3.8

IF (88 .CT.EPS) SS=EPS
YCI-1)m((YL-YCI=-1))/ABBCYL-Y(I-1))e88)+Y(I-1)
$§8=ABSCYN-Y(1))/3. 0

IF (88 GT.EPS) S8=EPS
YCIIS(CYH-YCI)D)/ZAD8CYH-Y(I)))e88e¥Y( 1)

Co T0 18

END

SUBROUTINE AVTAN (A, Y,2,N,YY,22,JDIN,.H,IH.FRACTN,IRCOUTE, 2E)

THIS SUBROUTINE CALCULATES EQUISPACED DATA POINTS ALONG A GRID LINE

DINENSIONR ACN), YYC(JDIN),22C¢JIDIN), YCN), 2(N), HCINH)
E1=2(1)

E2=2( M)

IF CIROUTE .NE.1)> GO TO S

Ei1=2¢ :

E2=2E

IF (H.E0.1) GO0 'O 78
ACL))B(2C2)-201) - /7¢Y¥(2)~-¥(1))
ACNI=CZCENI=2CN=1 D) 2¢(Y(NI-Y(N-1))
IF (N.E0.2) GO TO 19

INToN-1

00 18 1s=2,1INT
AL1eC(2C1)-2C1=-1)22/C(Y(1)=-Y(1-1))
A2 (2C1e1)-2CT))/(Y( 101 )=-YCI))
ACII)=(R1+A2)’2.0

J=l

ntt
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=}
28 J=J+l
IF (J . GT JDIN) RETURN
IF (YYCJ)H-YC(I)) 25,308,338
2% 22¢J)I=E}
GO T0 28
33 Jmded
IF (J . GT . J4DIM) RETURN
38 IF (YYC(J4)I-Y(1)) 28,48,43
48 22¢J)=2¢ 1
GO 70 38
43 IF (YY(JDI-Y(I+1)) 55,68.,695
63 Isl+}
IF (I+1.GT.N)> GO TO 58
GO TC 38
68 22(J4)=2(1+1)
Go 70 35
33 CALL AVTAN2 (YCTI), Y(I+1),2C¢1),2C1+41)3,ACI),ACTI+1),¥YY(J),22(0)
8.H, IH.FRACTN)
GO T0 35
70 J=i
38 DO 73 L=J.JDIN
73 2Z(L)=E2
RETURN
END
SUBROUTINE AYTAN2 (Y1.,Y2,21.22.A1,A2.,YY,22,H, IH,FRACTHN)

THIS SUBROUTINE 1S THE AVERAGE TANGENTS ALGORITHM FOR CONTOUR CUT DATA.

1T ENSURES THAT INTERPOLATED YALUES REMAIN WITHIN THE CONTOUR INTERVAL
UNDER CONSIDERATION OR FOR TURNING POINTS DOES NOT DEVIATE FROM THE
INITIAL CONTOUR DATA BY MORE THAN ONE CORTOUR IHTERVAL

DIMENSION HCIH)
DUM1=A1
DUN2=A2
bDUN3=21
DUN4=22
DUAS=YY
IF (22.GE.21) GO T0 S
DUN=Z] *
21=22
22=DUN
DUN=A1
Al=-A2
A2=-DUN
YYsY2+Y1-YY
S DYsY2-Y1
D2=22-21
A=(AL*DY+A2eDY-2 B#DZ)/(DY"e3)
B=(3.B8eD2-2 @*A190Y-A2¢DY)/(DY*»2)
C=Al
YsYY-Y1
2ZmAsYen3eBeYen2+Cay+2]
IF (22 NE. 21) GO TO 18
IF (A2 EQ. A1) CO TO 78
18 ITEST=2
TEST=Bw02-3 AsAsC
IF (ABS(AeDY+138 .8).GT ABS(B)) GO TO 1S
¥YS1=-C/(2 8¢B)
IF (YS1 . LT 8. 8.0R.YS1 GT DY) GO TO 7@




1S
28

23

38

36

37

33

48
45

5@

53
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1TEST={
GO TOo 33
IF (TEST)
¥YS1i=-B/(3

78.,28,25
.B*R)

IF (YS1.LT.B.B.0R.YS1 .GY.DY)> GO TO 78

ITEST=1
GO 70 39

YSi=(-B-TESTe»@ 5 /(3 .P»R)
IF (YS1.LT.B.B.0R.YS1.GT.DY)> GO 70 38

ITEST=1

¥YS82=(-B+TESTeeB 3)/(3 .8#R)
IF (YS2.LT.B.B.0R.YS2.G6T.DY)> GO TO 33

IF CITEST

.EQ.B) YS1i=YS2

ITEST=]TEST+1

IF (ITESTY

.NE. 2> GO TO 33

IF (YS1.LT . Y¥82) GO TO 36

DUM=yYS1
YS1myYS2
vS2=DUN
IF (A1 _NE
YS1=yYS2
ITEST=1
IF (A2 .NE
ITEST=R
G0 T0 35
IF (A2 NE
ITEST=1
IF CITESY
IF (ITEST
ISIGN=+1
IF (A1-A2
D0 48 1I=1
IF (21 EQ
IF CISIGN
CONT=HCI)

.8.B) GO TO 37

.8.8) GO TO 35S

.8.8> GO TO 3%

.EQ.8) GO 1O 78
.EQ.2) GO TO 33

.LT.B.B) ISIGHN=-1
+ IH

.HCI))> GO TO 43
LE@ 1) I=]+d

~H(I-1)

ZToAsYGi»e34B88YS1802+Ce Y5
IF (ABS(2T).LT.CONT)> GO TO 78

D2=FLOAT(

ISIGN>*FRACTN®CONT

IF (Y.GT.¥YS1) GO TO 5@

A=(Al*YS]
B2(3 8+D2

-2 B+D2)/YS1%93
~2.8%A19YS1)/YS1ee2

22mAsYse3+BoYee2+CoY+21
IF (ABS(22-21).GT.ABS(D2)) 22Z=21+D2Z

GO 70 78
DY=DY-YS1
YuY-YS1

A=(A23DY+2 HB*D2)3/DY*e3
Bs( -3 BeD2-A290Y)/DY»e2
Z2ZnAeyYse3+BeYne24+421+4D2
IF (ABS(22-21).GT . ABS(DZ)) 22=21+DZ

Go T0 78

2Ti=AeYS1es3+BeYSise24CayYS1421
2T2=R¢Y52+83+BeY329824CeyYS2+21

IF (2T1.LY.22 aND. 272 .GT.21) GO TO 7@
IF (Y. GT ¥YS1)> GO TO e@

IF (271 LT . 22) GO 70 78
DZ=FRACTHe(22-21)

A=(A1eYS1-2 BeD2)/YS1se]

B=(3 8+D2

-2 .80Q10Y5]1)/YS1#22

2Z2=AeYse3+PeyYanspiays2y

Appendix C

PAGE BB18
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PAGE BR11
C ss249x PROGRAM MAPGRID wawrx
IF (22 GT.21+D02)> 22=21+D2
GO 10 7@
68 IF (Y GT.Y¥S2) GO 7O &5
IF (271 GE . 22) 2T1321+FRACTN=(22-21)
IF (272 LE 21> 272=22-FRACTN#*(22-21)
D2=272-2T1
DY=vS2-YSl1
Y=Y-YS1
Az=-2 BeD2/DYe=%3
823 .8¢D2/DYws2
Z22neYes3+BuYeu2427T]
IF (22 .G7.2T1) 22=2T1
IF (22 .LT.2T2) 22=2T2
GO 70 78
65 IF (272.GT7.21) GO 10 7@
DZ=FRACTN=(22-21)
DY=DY-YS2
Y=Y-YS2
A=(QA2+DY-2 . B+D2)/DYes]
Bo(3 . 8502-A2¢DY)/DY*%2
ZZnAeY w3 +PaYen2+422-D2
IF (2Z.LT.22-02) 22=22-D2
78 AR1I=DUMI
A2=DUN2
Z21=DUNM3
22=DUN4
YY=DUMS
RETURN
END
SUBROUTINE ®EIIGHT (Y, YY.W,N,JDIM,2,8)
€
C THIS SUBROUTINE GENERATES WEIGHTING VALUES ASSOCIATED WITH THE
c INTERPOLATED DARTA POINTS ALONG A GRID LINE
c
DINENSION YY(JOIMD , WCJDIM),YC(N),2CN),ACN)
J=1
IF (N .EQ %) GO TO 7@
J=8
I=1
18 J=J+}

IF ¢4 .GT JDIM) RETURW
IF (YYC4)-¥Y(1I)> 28,308,380

28 W(J =8 8
GO 70 18
4B J=aJ+y

IF (J .GY JDIM)> RETURN
3B IF (YYCJ)I~Y¥(I+1)) SB.SB.68
68 I=I+t
IF ¢I+1.GT N> GO TO 78
GO0 TO 38
38 W(J)HI=ABSC(1 B/CYC(I+1)-Y(1)))
IF (2¢1) . EQ@.2¢CI+1) AND ACT) EQ 8.8 AND ACI+1) EQ .8 .8) #(Jy)a-1 8
GO TO 48
78 DO 88 L=J,JDIN
88 W(L)=n.B
RETURW
END
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Appendix D
LINEAR INTERPOLATION VERSION OF SUBROUTINE COORDS

PAGE BBE:
SUBROUTINE COORDS (F,G,.H.X,Y.Z, INAX,KMAX, WF . K, IEXIT)

THIS SUBROUTINE EVALUATES THE CO-ORDINATES AT WHICH THE GRID LINES
INTERSECT A CONTOUR. LINEAR INTERPOLATION IS EMPLOYED.

DIMENSION FCIMAX), GCIMAX), XCKNAX) , YOKNAX ), Z(KNAX)
EPS=ABS(B.B1¢WF)

123

IF1aNFIXCFCI=1)/UF)

IF (ABS(FLOATCIF1)sWF-F(I-1))>.GT EPS) GO 70 S
K=K+1

X(K)I)=F(I)

Y(KHI=G(I)

2(K)=H

I=l-1

I=aTe+t

IF (I.GY INMAX-1) RETURN
IF1=sNFIX(FCI-1)/0F)
IF2aNFIXCF(I)/8F)
FFaCFCI+1)=-FCIDI*(F(I)-FCI-1)
NF=1F2-1F})

IF (NF) 48.58.68

D0 28 N=1.NF

KsK+{
K(K)=FLOAT(IF1)»WF+FLOATCN)I=UF

IF (ABS(X(K)-F(I)>).GY .EPS) GO TO 14
Y(KI)=G(I)

2(K)=H

IF (FF) 118,88.88
YCEIBC(KCKI=FCI-1))0(G(I)-GCI-1))/CFCID=-FCI-1)3))+GCI-1)
2(K)eH

GO TOo 88

NF=-NF

IF CABSC(FLOATCIF2)*UF-F(ID). LT .EPS) NF=NF+1
DO 38 N=1.NF
XX=FLOATCIF1)oUF~-FLOAT(N-1)=4F

1F (ABS(XX-F(1-1)).LT.EPS) GO TO 38
K=K+l

R(K)I=XX

IF CABS(X(K)-FC(I)).GT .EPS) GO TO 78
Y(KI=GC(I)

2¢(K)=H

IF (FF) 118.88,88
YCKI=(CRCKI=FCI-13)8CGII)~-GCI-1 D)/ CFCID-FCI-1)))+GCI-1)
2(K)=H

GO 7o o8

UX=FLOATCIF1)eWF

IF (ABS(XX-F(I1)>).GT.EPS) GO TO 88
KnKel

IF (K.GT.KHMAX) GO TO 128

XC(K)I=FC(I)

Y(K)I=GC(1)

2(K)nH

IF (FF) 118.88.68

K=Kel

X(KImX(K-1)

Y(K)mY(K-1)

2(K)I=Z2(K~1)

GO T0 6@

END

oLl
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Appendix E

PROGRAMS TO CHECK OPERATION OF PROGRAM MAPGRID

El
esees PROGCRAM DRIVER] eeese
THIS PROGRAM PRODUCES CONTOURS OF A 2-D GCAUSSIAN, CENTRE (8. 8)

DIMENSION XC13),Y(13)
1TYPE=D

INCe1 2

Plel 1413992694

HMAX=2408 . 8

HPBU=16.80

CONT=23. @
CONST=ALOG(2.8)/HPBVee2
00 18 J=1,9
FeCONT»FLOATC(18-J)
Re(CALOGCHNAX/F ) )I/CONBT doel. .S
DTHETA=2 AePI/FLOATCINC)
00 28 1I=1,INC
THETA=DTHETA*FLOATCI-1)
K(I)=ReCOB( THETR)
Y(I)=ReSINCTHETA)
INUNSINC+1L

XCINUM)I®X(1)

YOINUM)I®Y( 1)

MRITE (6.61) F, INUN, ITYPE
FORMAT (F6.1,18.12)

WRITE (6.62) (X(1),Y(]),1=1,1INHUN)
FORMAT (2F8.3)

CONTINUE

s§T0P

END

E2

seese PROCRAM DRIVER2 ewnsee
THIE PROGRAM EVALUATES A 2-D CAUSSIAN OVER A 35939 GRID

DINENSION 2(39)

Pla3 141392634

HHAX=248 8

HPBU=16.8

COHST=ALOG(2 B)/HPBVse2
IDIN=39

JDIN=39

URITE <6,60) IDIN,JDIN
FORMAT C(I13,1%.13)

00 18 J=i,J0IN

Y=-29 B+FLOATCI-1)

DO 28 I=t,IDIN

Xe-29 B+FLOATC(I-1)
RRsXen24Yoe2

2¢(1)=248 B/EXPC(CONBTORR)
IF (2C1) LY. 25.0) 2¢1)=25.8
MRITE (6.61) (2(1),1»1,99)
FORMAT (12F6.1)

s1oP

ENMD
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Appendix F
PROGRAM EXPAND

Function

To expand (or contract) the number of points in a grid in either or both the «x

y directions,

Dimensions of arrays

X

A % number of points in a row or column, whichever is greatest (IDIM)
Z

XX . . .

77 number of points in a column after expansion (JJDIM)

AA IDIM, JJDIM.

Program units

Subroutine AVTAN : Calculates equispaced data points along a grid line. (This

subroutine is very similar to that described in Appendix B, The main difference is that

interpolated values outside the dataset are only set to the value of the nearest point in

the dataset, no other option being available.)

F.5

Subroutine AVTAN2 : Average tangents algorithm for uniformly spaced data.
In addition the following FORTRAN functions are called:

IFIX : integer value nearer to zero

FLOAT : converts integer to floating point,

Input/output

Input via FORTRAN channel | : expansion factors for x and y directions

Input via FORTRAN channel 5 : the input grid (formatted as output by MAPGRID)

Output via FORTRAN channel 6 : expanded grid (format similar to that of input
grid) .

Listing of program EXPAND

otl



Appendix F S

[4 PACE 8801}
i [

c sseee PROGRAM EXPAND ocese

[

c THIS PROGRAN EXPANDS OR CONTRACTS THE NUWBER OF POINTS IK A CRID

[

18
32

61

20

38

48

8

nooOo0

10
13

20

1o

COMMON X(237),XRC18353),AC257),2¢23?),22¢10899).AR(237.183%)
COMMON AT(237,237)

READ C1.11) XN. YN

FORMAT (2F0.J3)

READ (3.31) IDIM.JDIN

FORMAT (13,1X.13)

00 1@ J=1,JDIN

READ (3,32) CAT(1,J),1=1,101IN0)
FORMAT (12F6.1)
IPTS«IFIXN(XMeFLORTCIDIN=-1))e1
JPTSeIFIX(YNeFLOATC(JDIN=-1))e3
WRITE ¢(6.61) IPT8,JPT8

FORNMAT (14,1X.14)
SCALE=FLOATC(JDIN=~1)/FLOATC(JIPTS-1)
b0 28 J=1,J4PT8
RUCIIRFLOATC(J-1)®8CALE

DO 38 J=1.,JDIN

HCJ)I)=FLOAT(J-1)

00 48 I=1,IDIN

00 38 Je1,JDIN

2¢J)reATCL, 3

CALL AVTAN (A,X,2Z,J0IN,XK,22,4PT8)
DO 48 J=1,JPTS8

AACT, J)=2203)
BCRALE=FLOATCIDIN-1)/FLOATCIPTE-1)
DD 68 Ie=1,1PT8
HXCI)=FLOATC(I-1)eB8CALE

DO 7?8 Ie1,IDIN

RCI 3=FLOATCTI-1)

00 88 J=i,JPT8

bo 98 I=1,]1DIN

2¢1)=ARCT, I)

CALL AVTAN (A.X,2,I0IN,XX,22.1P78)
MRITE (6,32) (22¢1),1=1,1P78)

sTOP

END

SUBROUTINE AVTAN (A, ¥,2,N,YY,22,40I0)

THIS SUBROUTINE CALCULATES EQUISPACED DATA POINTS ALOMC A GRID LINE

DIMEMSTION ACN)Y, YY(JDIN),2ZCJDIN), Y(N), 2C(N)
E1=2(1)

EQ2=2(N)

IF (N EQ@ 1) GO TO 78
ACIDI®(2€2)-2¢3))/¢(Y(2)-Y(2))
ACHISCZCNI-2CN-1))Z7CY(N)I-Y(N=-1))
1F (N LT . 3> GO TO0 13

INTeN-1

00 18 I=2,INT
AImC2CII~2CT1~2))/7(YC1)=-Y(I-1D)
A20(2CT1+1)-2CT1))/7¢YCT+1)=-YCL D)
ACT)=(AL+R2)/2.8

J=@

lst

PEXRS}
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PAGE BB@2

IF (4 GT JOIN) RETURM

IF CYY(J)-Y(1)) 23,30.38
22(J)=E1

cCo 70 29

Jedei

IF (J.CT . JOIN) RETURN

IF (YYWI)I-Y(1)) 20,408,463
124X BLY{E$]

G0 10 33

IF CYY(J)I-YC(I+1)) 93,60,63
Teleg

IF C(1+3.GCT _N)> GO 7O S8

Co 70 38

22¢3)22C(1+})

Co 10 33

CALL AVTANZ (ACT#1), ACT), ¥YYCJ), 22¢4),¥CT101),Y(1),.201410),2€¢1))
co 1o 33

Jei

00 73 LeJ,JDIN

22¢LHY=E2

RETURMN

END

BUBROUTINE AVTAN2 (AN2.01.YY.22,Y2,Y1.22.21)

THIS SUBROUTINE I8 THE AVERAGE TANGENTS ALCORITHN FOR EVENLY SPACED DATA.

DYevY2-Y1

02=22-2%

Re(A16DY+A2eDY-2 BeD2)/(DYOe])
Be(3.0eD2-2 BeRleDY-A2eDY)/(DY0e2)
Cep}

YovyY-vi

22=AeYeoJeBoYen24CoY e}

RETURM

END

ort
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Appendix G

PROGRAM SECTION

Function
To produce a cross—-section across a grid of points.

Dimensions of arrays

; maximum number of points required in a cross~section
Iw

ZT 4

zz number of points in a row in the grid, 4.

Program units -
Subroutine AVTAN : average tangents algorithm for uniformly spaced data.
In addition the following standard FORTRAN functions are called:

FLOAT : converts integer to floating point

IFIX : integer value nearer to zero,

Input/output

Input via FORTRAN channel 1 : Co-ordinates of top left corner of grid and grid
spacing.
Co~ordinates of the two end points of the required
cross—section,
Number of points required in the cross-section.
Input via FORTRAN channel 5 : The input grid (formatted as output by MAPGRID).
Output via FORTRAN channel 6 : Number of points in the cross-section and the
x and y co-ordinates and the height of the

points in the cross-section.

Listing of program SECTION
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Appendix G

PRGE B8ai

essss PROGRAN SECTION weese
DIMENSION 22¢18535,4),X(20880),Y(2088),2(2888).27(4),1v(2080)

INPUT CO-ORDINARTES OF THE TOP LEFT HAND CORNER OF GRID AND THE GRID
SPACING

READ (1,11) XB,YQ. ¥
IMPUT THE CO-ORDINATES OF THE TWO EMDS OF THE REQUIRED CROSS-~SECTION
READ ¢1.,12) X1.Y1,X2,Y2

INPUT NUMBER OF POINTS REQUIRED IN THE CROSS-SECTION. IF THE NUMBER IS
LESS THAN 2 THE PROCRAM CHOOSES A NUNBER BASED ON THE GRID SPACING

READ (1,13) IPTS
CHAMNGE DIRECTION OF CUT IF Y1.LT.Y2

IDIRN=1
IF (Y1 .GE.Y2) GO TO S
DUM=X1
X1=X2
X2=0UN
DUN=Yt
Y1a¥Y2
Y2=0UN
IDIRN=-1
3 CONTINUE

CALCULATE POINTS AT WHICH INTERPOLARTED VALUES ARE REQUIRED

IF CIPTS.GE.2) GO 10 18
Da((X2-K1)s024(Y2-Y]1)042)228.§
IPTS=IFIX(D/U¥)+1

10 SX=(X2-X1)/FLOATCIPTS-1)
SY=(CY2-Y1)/FLOATCIPTS-1)
00 1S I=1,IPTS
XC(I)=XI1+FLDATC(I-1)0e8X

13 Y(I)sY1+FLOAT(I-1)e8Y

PERFORM INTERPOLATION

READ (5,31) IDIM.JDIN

DO 28 K=1,4
28 READ (5.,932) (22(1.K>,1I=1,1IDIN)
J=2

Y@=YB+FLOATCIDIN-1)e¥
00 25 L=1,1PTS
IXaJFIXCCKC(L)=KB)/U)+8
I¥YsIFIXCCYR-Y(L))/U)I+1
KREL=((XCL)-XBI/W)=FLOATCIFINC(X(L)-XB)/¥))
YRELe(CYB-YCL)II/W)-FLOATCIFIXCCYB-Y(L))/¥))
IF CIX.LT.2) GO TO 3%
IF C(IX . GT.IDIN-2) GO TO S%
IF ¢(IY.LT.2) GO TO 33
IF (1Y .CT. J0IN-2) GO 1O 39

38 IF (1Y .EQ.J) GO TO 4@

ol
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Appendix G

(e N aNel

(2NN o)

(ol e Moyl

33

40

43

33

23

63
70

73

83
0

11
12
13
L3

61
62

0O 39 Kk=1,3

Do 393 I=t,10IN

22(1.K)=22¢f.Ke})

Juysel

READ (3.32) (22¢(1.4),1=1,1DIN)

GO 10 38

DO 495 K=1.4

21922CIX-2+K, 1)

22022CIN-24K.2)

23220 I%-24K,3)

24822C IX-2¢K, &)

CALL AVTAN (21,22,23,24,YREL.ZTC(K))
CALL AVTAN (2T(1),27TC(2),2TC3),27(4), XREL.2T1)
00 98 K=i,4¢

21%22¢I1%-1,K)

22e22CIX.K)

23022CIXe1,K)

242220 IX+2, 1)

CaLL AVTAN (21,22,23,24,%REL.2T(K))
CALL AVTAN (2T(1),27C(2),.2T(3),2T(4),YREL,2T2)
2CL e 271627272 0

TUiL )=}

Go 10 2%

2(L)=B B

Tv(L)=@

CONTINUE

OUTPUT DATA (DEPENDS UPON WHETNER THE DIRECTION OF TNE CUT WAS REVERSED)

LB

Lei+}

IF Ct¥(L) EQ 2) GO YO 68
CRAD=Z(L+1)>-2¢L)

LAAX=L -1

DO 6% LiLsi,LMAX
2ZCLL)Y=2¢L)-FLOATCL-LL )*GRAD
Lape]

1IF ¢JvweL) EQ 1) GO TD 70
GRADeZ(L-1)-2(L~2)

DO 73 LiLs=L.IPTS
2CLL)I=ZC(L~1)-CRADSFLOATC(LL-L+1)
MRITE (6.61) IPTS

IF CIDIRN EQ.31) GO TO 83

00 68 I=1,1PTS

11e]1PTSet-1

MRITE €6,62) X(I11),YC(I1), 2¢1ID)
STOP

D0 98 I=1.1PTS

MRITE €6,62) X(1),¥(1),2¢1)
sTOP

INPUT/OUTPUT FORMATS

FORMAT (3F6 2)
FORMRT (4F6 2)
FORMAT C(14)
FORMAT C(13,1X,13)
FORMAT C(12F6 1)
FORKRAT C(14)
FORMAT (3F6 1)

END
SUBROUTINE AVTAN (21,22,23.24,YY,22)

THIS S"P ‘OUTINE 15 THME AVERAGE TAMCENTS ALGORITHN FOR UNITY
SPACED {ATA POINTS

A1=(23-21572 @
A2m(24-22>/2 8

02e23-22

A=2( A1 +A2-2 BeD2)

Be(3 8202-A2-2 BeR1)

C=n1
22mQeYYoe3eBeYYee2sCoYYs22
RETURN

END

-+
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Fig4 Grid produced by taking cuts in y direction
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Fig5 Grid produced by taking cuts in x direction
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Fig6 Magnitude of the differences between the program and the analytic
grids using method 1 section 4.4
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Fig 7 Magnitude of the differences between the program and the analytic
grids using method 2 section 4.4
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Fig 8 Magnitude of the differences between the program and the analytic
grids using method 3 section 4.4
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Fig 9a&b Examples of maps {see section 4.4 for explanation)
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e00oRAABBA111111122222222333333333332222222211111110080008080848
8008080881 111111222222333333333333333332222221111111680@8080808
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B91111122233344455%6667777778887777776665554443332221111108
BR111112223334443%666777768080888877776665544433322211111088
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B11111222333443%366672788699999999988877766053344333222111110
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B11)11222233344%%606778883999999999688887766633443332222111180
B1111222233344%%6667788R399939992923888776603544333222211118
Bl111122233344556667272788d99999393998887776603544333222111118
B1111122233344555667278888999939988887776655%944333222111118
011111222333444556677786308239999908888877766554443332221111148
B111112223334445566677783880883580838777e6055444333222111118
B11111222233344555666777880008868080227¢665554433322221111180
8B8111112223374445560677778338008887777606554443332221111188
B0111112223334445550667777?77888777777206655544433322211111080
BB111112222333444555006077772727227%666655544433322221111108
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BUYI111112222333444455550b00bb6b6nb05355444433322221111110080
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080R00LBA1I 11 111122222233333333333333333222222111111180808088
BAYABOBAB1111111222222223333333333132222222211111110880000088
BEIB0OBEBBI L1111 1122222222222222222222222111111118800000BA0
08888008ARA 111 11111122222222222222222221111111110808080808800008
B82HBABRAAALMI1 11111111 2222222222222 1111111111088 6EEAGBAAE
8840008280881 11111011822230111131411113180880A0RBBRAABAA
0Bu00BAAAVALAA@BAI LI I I 111)11B8808000880B0GE
@ddiaadvenBaadnEERII It LIVl LI 11111 6A08880868Q8U08a0
084000B0R0AUAOAABABATIINLIL111110111111118800000880%808400048
0BdAQ0RABANAKU00BANABAAY 11111211111 8ABABHARGNBAONBAABAROAA
CEERTEEEREREEEEEEEEEEEEEEBEEECDEEEELEEELEEEEELDEEEREEEEBDEED]

Numbers shown represent {(grid value : 25) rounded to the lower integer

Fig 10 Final grid produced by combining those shown in Figs 4 and 5

using method 3 section 4.4
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Fig 12

Fig12 Geometry of operation of program MAPGRID on circular contours
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Numbers shown represent (weighting value x20) rounded to the lower integer

Fig 13  Waeighting values associated with each point of the final grid

Fig 13
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Base level = 0

a

Original contour map

- — = False contour
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b

Contour map with false contours added

Fig 15a&b

Introduction of false contours

Fig 15a&b
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Fig 16 Geometry of the interpolation performed by program SECTION
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Fig 17 Grid lines crossing a contour when a contour changes direction
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